Some Problems

R.H F
e Knot Theory

A problem of a rather general nature is to find properties that it is.
necessary for a group @ to have in order that it be a knot group (or a
group of some analogous class, such as the class of link groups). One such’
property is that G/G@’ = Z [hence A(1) = 1]; another is that its defect is:
1; and another is that its Alexander matrix class is “Hermitian,” that is,.
A(t) is equivalent to the transpose of A(1/¢). This is basically the property§
that I have called [1] “duality” in a knot group.

Problem 1. What group-theoretical property of G is responsible forzj
the Hermitian character of the Alexander matrix class? :

The Hermitian character of the elementary ideals (evén for knots m"
arbitrary oriented 3-manifolds) is a consequence of the Blanchfield duahty
theorems [2]. These relate the homotopy chains of the complementa.ryi
domain and therefore indicate a first step toward a solution of Problem 1

Problem 2. Characterize, among the mtegral polynomials in x va.na.bles, 3
those which are link polynomials A(Zy, ..., t.). 3}

%
This is solved [3] for 4 = 1. For u > 2 several necessary condltlonsz
are known [1]. }

Problem 3. Is it true that every knot group can be represented as a freei
produet (F, X% F,)r,,, of the free group of rank n with itself amalga.matedﬁ
with respect to a free subgroup of rank 2n — 1?

~ This is a conjecture of Neuwirth’s, who has proved it for all alternatmg?i
knots, along with all but one (9“) of the nonaltematmg knots of fewerj
than 10 crossings [4]. The origin of the conjecture is, perhaps, the ob13?
servation that the group of a torus knot can be so represented, w1th§
n =1 G = (z,y:2* = y®) for a torus knot of type (a, b). This is obtameda
by decomposmg the complement of the torus knot into the part not msndei
the torus and the part not outside the torus, and applying van Kampen s‘
theorem. If the conjecture were proved, various deep properties of
would follow, for example, the known fact that a knot group has no ele-q
ments of finite order, and the conjectured fact that only torus knot groups
have centers [4].

Problem 4. Is it possible to represent any pair of commuting elements -
of G by loops on a non-singular torus subset of the complementary domain?
168
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If two elements commute, then naturally, representative loops lie
together on a singular torus in the complementary domain. The problem is
analogous to the Dehn lemma.

Problem 5. Is every knot group residually finite? That is, given any
non-trivial element u of G, does there exist a homeomorphism ¢ of @ into a
finite-group such that (u) = 17

Problem 6. Is the topological type of S* — k determmed by the group G
together with its peripheral structure?

This has been solved by Neuwrith [4] for those knots k for which G’
is finitely generated. Rapaport [5] has shown that @' cannot be finitely
generated unless the leading coefficient of A(¢) is 1.

Problem 7. Ts the type of a knot k determined by the topological type
of its complement S — k?

This has been shown to be true for torus knots [6]. For links, the
answer to the analogous question is in the negative [7]. For 2-spheres in
4-space the analogous question has been partly settled by H. Gluck [8].

‘Problem 8. If the group of a wild knot is finitely generated, is it a knot
group?

Of course, any knot group (= group of a tame knot) can be obtained
as the group of a wild knot, simply by tying that kind of a knot in a good
section of a wild knot whose group is Z.

Problem 9. Whlch pairs of knot types can be represented by the two
components of a link of genus 1?

The genus of a link is defined in the same way as the genus of a knot,
but note that it depends on the orientation of the components. If the
orientation of one of the components is changed the genus may change.

Problem 10. Do there exist non-invertible
knots?

Among the 84 prime knots of 9 or fewer
crossings, the only ones that are not obviously
invertible [9] are 81, 92, 9, 935, 94, and 9. \
Although there is strong experimental evidence
that 8; is not invertible, it has never been proved.
To prove non-invertibility, it would be sufficient
to prove the non-existence of any automorphism
of G that maps a meridian into its inverse and a 8y
longitude into its inverse.
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N .
If 8;; were not equivalent to its inverse ¢(8y), then 8;; # 8y and
817 # o(81) would be inequivalent knots. :

Problem 11. Find conditions on a link of 2 components that must be
fulfilled if the link is interchangeable.

A link K + L is interchangeable if there is an autohomeomorphism of
space that maps K on L and L on K. An obvious condition is that K and
L must be the same type of knot, but this is clearly insufficient.

Problem 12. Characterize, among the knot polynomials, those that are
polynomials of alternating knots; of special alternating knots.

A knot is called alternating if it has a projection in which the under-
crossings and overcrossings alternate around the knot. It is special alter-
nating if it has an alternating projection in which one of the chessboard
surfaces is orientable, that is, in which the Seifert circles are not nested.
The polynomlal of an alternating knot is an alternating polynomial in
which no terms are skipped [10], that is, A(f) = D% (—=1)icgiand ¢; > 0.
Examination of the polynomials of the alternating knots of fewer than 12
crossings leads to the conjecture that ¢; < ¢1 < ... < ¢, and that when-
ever ¢; = ¢ for some 7 < h, then ¢; = ¢41 = ... = ¢ The polynomial
of a special alternating knot has the property [11] that ¢, and A(1) have
the same sign.

_ Problem 13. If £ — A is a covering of the complement S* — L, and K
is a knot that is contractible in S — L, then K is covered by a number
of curves, indexed by the cosets of the subgroup to which the covering
belongs. Can the linking numbers between these curves be eomputed from
the group of the link K + L?

In 1937, Eilenberg [12] introduced an interesting concept that does
not seem to have been investigated further. Call a link of two components
0-linked if the linking number is differ-
[\ .. .. .ent from 0, and define, inductively, a
link to be n-linked if every polyhedron
in.the complement of one of the com-
ponents, say Ls,, that contains the
other component L; and on which
some multiple of L; bounds, has on it.
a curve that.is.(n — 1)-linked with
L,. The link is 1-linked but not
O-hnked .as was shown by Eilenberg.

Problem 14 Does there exist, for every pos1t1ve integer n, a hnk that
is n-linked but not (n — 1)-lmked?
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Good condidates for this are obtained from the link that is 1-linked
but not 0-linked by doubling and redoubling, etc., for example, for n = 2

Problem 15. Is n-linking symmetric?

For n = 1, this follows from a characterization of Eilenberg’s: L, and
L, are 1-linked if the group of L, + L, cannot be mapped homeomorphically
onto the free group of rank 2.

Problem 16. Does n-linking have anything to do with the identical
vanishing of the Alexander polynomial A(z, ), or with the length of the
chain of elementary ideals?

Problem 17. Are the arcs 1.1, 1.1*, 1.3 of “Some wild ares . L [13]
or the “remarkable simple closed curve” [14] invertible [7]‘? amphlchexral

e

Problem 18 (Ball). Do there exist uncountably many wild arcs that
are locally tame except at one end point?

Problem 19. How is the local penetration index [15] related to the
enclosure genus [15]? Can either of these numbers be calculated from the
group and/or the local groups?

Problem 20. Do there exist wild simple closed curves whose maximal
peripheral subgroups [16] are 1somorphlc toZ X Z? to Z? to 1? Are these
the only ‘possibilities? .

It would appear that the Bmg sling [17] has no non-trivial peripheral
element. It would also appear that a maximal peripheral subgroup of any
wild knot must be either Z or 1.

Problem 21. Does there exist in 3-space or in 4-space a wild 2-cell with
an interior point p such that every 2-cell subset that has p on its boundary
is tame?

This seems to be a natural generalization of the wild arc that is the
sum of two tame arcs. [137]. In 4-space, a good candidate is obtained by
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rotating about a plane an arc in half 3-space in which a sequence of knots
is tied econverging to the end point that is in the plane. '

Problem 22. Does there exist in 3-space or in 4-space a non-invertible'
2-cell? A non-amphicheiral 2-cell?

In our paper in these proceedings, Orville Harrold and I showed that
in 3-space there is 2 non-amphicheiral are, and modulo an affirmative solu-
tion to Problem 10, an arc that is non-invertible (and not for a trivial
reason). The 2-cell asked for in this problem should be locally tame at every
point except one interior point. :

Problem 23. Is the granny knot a slice knot [7]?

The expected negative answer to this question would establish the
insufficiency of the polynomial condition [7] A(¢) = F(¢)F(1/t) for a
knot to be a slice knot. : ‘

Let h* denote the minimum of the genera of the locally flat orientable’
surfaces in half 4-space H* bounded by a knot or link L. Clearly h* < h,’
the genus of L, but equality need not hold.

Problem 24. Find conditions that the group of L must satisfy in order
that k* < a given positive integer N. .

A knot is a slice knot iff A* = 0, so the polynomial condition A(f) =
F(t) F(1/t) is a partial answer to this problem.
Let us call a singular disk in' R® a ribbon if the singularities are all of!
the following type: ' ' '

Bl

and let us call a knot a ribbon knot if it is the boundary of a ribbon.:
Clearly any ribbon knot is a slice knot. (Deform a neighborhood of ‘the.
line A”B" into H*.) Simple examples of slice knots are ribbon knots. Fo!

example, the square knot is a ribbon knot. o
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Problem 25. Is every slice knot a ribbon knot?

Let L be a link of g components and consider the following four proper-
ties:

(1) Lisa cross séction of a union of u locally flat 2-spheres in 4-space R;

(2) L bounds p locally flat 2-cells in half 4-space HY;

(3) L is a cross section of a single locally flat 2-sphere in R*;

(4) L bounds a surface of genus 0 in H*,

It is easy to see that (1) & (2) = (3) = (4);

satisfies (3) but not (2), and

satisfies (4) but not (3). If u < 2, (2) & (3),and, if p = 1, (3) == (4).
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I shall call L a slice link if it has'property (3), and a slice link in the strcmg
sense if it has property (1) (2). -

Problem 26. Find a necessary condltlon for L to be a slice link; a shce
link in the strong sense..

Problem 27 (Kosinski). Can one find in S a locally flat S X St
neither of whose (closed) complementary domains is what you Would
expect (82 X Etor Bt X S')? .

This is a natural generalization of a very powerful theorem of Alex-
ander’s [18]: if 8! X 8! is tame in 8% then at least one of the closed
complementary domains is a solid torus.

If one has a locally flat 2-sphere (in 4-space) represented by cross’
gections, then it is easy to deform it so that all the minima are below'
all the maxima. It then follows that the group of the 2-sphere is a homo-'
morph of the group of any of its ¢ross-sectional links, just so long as one
cuts between the maxima and minima. :.;

Problem 28. If a finitely presented group is a. homomorph of a knot}
group and is infinite cyclic over its commuta,tor subgroup, 1t is the groum

of a locally flat 2—sphere in Rt E 5

Since there are locally flat 2-spheres in R* whose groups are not knota
groups (Examples 10, 11 and 12), the following question unmed;lately%
comes to mind. m

Problem 29. Does there exist a locally flat 3-sphere in 5-space whos@
group is not the group of any Jocally flat 2-sphere in 4-space?

Problem 30. If the group of a looa.lly ﬂat 2—sphere in Rtis = Z is th
2-sphere trivial? -

ERFERS S

Problem 31. Is there more than one type of loca,lly flat projective pla.n
in R* whose group is = Z,?

It follows from the Alexander dua.hty theo;'e‘m that if G is the gro;zg

SRS S

of a surface in RY, then G/@ is Zor Zz, depefiding on whether the surf
is orientable or not. It is not difficult to construct a locally flat projective
plane for which G =~ Z,. :

Problem 32. Gan the g group of a loca.lly flat projective plane i in Rt be
finite group other than Z,?

Problem 33. Does there exnst a loca.lly flat 2-sphere whose group has an
element of even‘order‘? \,},.r i

2%

3 s B e

Fen it

Problem 34. Does there exist™a locally flat 2-sphere whose group isf
Z X D where D is the dodecahedral group? -
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The origin of this question is an example constructed by Barry Mazur
of a locally flat 2-sphere in a homotopy -4-sphere whose group is precisely
Z X D. A negative answer to Problem 34 would therefore imply that the
4-dimensional Poincaré conjecture is false.

eProblem 35. Does there exist a non-amphicheiral locally flat 2-sphere?

Kinoshita observed that if A(f) is not a reciprocal polynomial, then
there can be no automorphism of ¢ that maps the generators z; into their
inverses, and consequently, a 2-sphere with such a polynomial is non-
invertible. The same argument shows that such a 2-sphere is not +amphi-
cheiral. (Examples 10 and 11 have non-reciprocal polynomials.) Thus
Problem 35 asks whether there are any locally flat 2-spheres that are not
—amphicheiral, that is, not transformable into their reflected inverses by
an orientation-preserving homeomorphism. The fact that the simplest way
to construct a slice knot is to compose & knot with its reflected inverse
adds point to the problem.

Problem 36. Find an algorithm for calculating the second homotopy
group of the complementary domain of a locally flat 2-sphere (regarded as
an operator group, with the group of the 2-sphere as the group of opera-
tors).

Problem 37. Do there exist aspherical locally flat 2-spheres?

There is a class of 2-spheres in R* whose asphericity is known [197,
but they are not locally ﬂat

Problem 38. Construct Brunman [20] systems of 2-spheres in R‘

This problem, which is probably rather easy, asks whether one can find
u disjoint locally flat 2-spheres such that any & of them are completely
splittable, but no & -+ 1 of them are splittable at all.

Problem 39. (a) Which slice knots are cross sections of trivial 2-spheres?
(b) Which slice links are cross sections of trivial 2-spheres? (¢) Which
slice links in the strong sense are cross sections of a trivial union of trivial
2-spheres?

I suspect that the stevedore’s knot is not a cross section of any trivial
2-sphere. My reason for thinking this is that every attempt to destroy the
Alexander ideal &; of the stevedore’s knot by extending it to a locally flat
2-sphere in R* seems to fail. In connection with parts (b) and (¢) of
Problem 39, compare examples 13 and 14.

Problem 40. How many ends [21] does the group of a locally flat
2-sphere have?
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This generalizes a question settled by Papakyriakopoulos for knoﬁf
groups. A knot group has two ends or one end, depending on Whetheg
the knot is trivial or not. Problem 40 asks merely whether there is anﬁ
locally flat 2-sphere whose group has an infinite number of ends.
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