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1 Answer Active | Oldest | Votes

& The general case is very much like the 2-dimensional case, it just takes time to process the picture,
to see how vou could do the same constructions in the higher-dimensional case.

11

A punctured ST x S looks like a wedge of two circles, but fattened up a little bit. Precisely, around
each cirele you have an annulus neighbourhood. To immerse the punctured torus into 2 what vou

V do is vou embed the first annulus, and then embed the 2nd annulus so that it overlaps the first in
the same way that the two annuli live in the torus itself. In doing this you create an extra overlap,
but that's fine as we're only looking for an immersion.

A punctured ST x S! x 51 has the same kind of decomposition. It looks like the union of three ’t)A\Cl( b oum O( a

"annuli” , precisely, [0, 1] x St x 51,81 x [0,1] x §1 and ST x §1 x [0, 1], where here [0, 1] is

shorthand for a small interval in S'. Each of these spaces you can embed in R? as tubular 0'( & ‘b&bl&l&(‘ neij\‘borMOOO(
neigbhourhoods of embedded tori. You just have to make the embeddings overlap in the same way CU‘OUV\o{

they overlapin S' x §! x S!-- and that is to make F

[0,1] x ' x S' N St x [0,1] x §' = [0,1]? x S!,i.e theyintersect along one of the coordinate ’

circles. So the idea is to draw a picture of an embedded torus, then along each of the two coordinate
(longitude,latitude) axis, draw the boundary of a tubular neighbourhood of that axis. Suitably
interpreted, vou can think of this picture as the image of the coordinate tori under your immersion.

The general picture goes like that.

answered Mar 2113 at 20:55 .
Ryan Budney
21.7k @ 3 63 A 103
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Appendix B : SUBMERGING A PUNCTURED TORUS
Submesgion = delfereatiol. everyuhere surjective

This contains verbatim a letter from J. Milnor OéOCtObeI‘, 1969 ,
which gives an elementary construction of a submersion of the
punctured torus TM—point into euclidean space RT . It is used in §3.
A different elementary construction was found by D. Barden [Bar] [Ru]
earlier in 1969 , and another by S. Ferry , [Fe] 1973% Milnor produces
a smooth C* (= DIFF) submersion . A secant approximation to it in
the sense of J. H. C. Whitehead [Mu; , §91 provides a piecewise-linear
(= PL) submersion .

“Let M be a smooth compact manifold .

HYPOTHESIS . M has a codimension 1 embedding in euclidean space
so that , for some smooth disk D CM and some hyperplane P in
euclidean space , the orthogonal projection from M — D to P isa
submersion .

THEOREM . If M satisfies this hypothesis , so does M X S! .
It follows inductively that every torus satisfies the hypothesis .

PROOF . Suppose that M = M5! embedsin RK so that M —D
projects submersively to the hyperplane x, = 0. We will assume that
% the subset M C RK lies in the haif-space X; =~ 0 . Hence , rotating Rk
" about RK—1 in RX*! we obtain an embedding
(X, 8) # (Xy oo X1 » X €08 0, Xy sin @) of M X S! in RK*1 . Thi
embedding needs only a mild deformation in order to satisfy the required
property . .

Let e, ..., ey be the standard basis for RETL | Let g be the
rotation

e 7 e cosf)+ek+1 sin 8

e v € for i<k,

ep+) ™~ Sinf tep qcosh .
Let n(x)=n,(x)e; ++ nk(x)ek be the unit normal vector to M in Rk.

t And still another by A. Gramain [Gra] 1973 .




44 R. Kirby and L. Siebenmann Essay |

For x€M-D we can assume that n, is bounded away from zero . Say
n, =22a>0.

Suppose that M lies in the open slab 0 < Xy <B of RX . Choose
€ > 0 so that the correspondence (x,t) + x + tn(x) embeds
M X (-¢,€) diffeomorphically in this slab .

Choose a smooth map t: S! > (-€,€) so that

dt > 28/a when 6=0: coso0dt > 0 always .
dg dég

]

N -

21 8

The required embedding M X S! —» RK* is now given by

(x,8) + re(x + t(6)n(x)} .

Ie1

VALl Lt i,

/ r l \\‘\\\\\\

Computation shows that the normal vector to this embedding is
p/Hpll where

dt

. P(x,0) = (xg + tyy drg(n) - 0

Let v=e; —aepyy - Then p-v = A+B where

A= (xp +tng Mny —asing n ) and B=acosd % = 0.




Appendix B. Submerging the punctured torus 45
Thus if x€M ~-D we have

A= (x + tnk)(2a ~a) > 0

hence p * v> 0. On the other hand , forany x&€M , if 8 =0, we
have
A=Z-0, B> a(28/a) .

Hence p+v >0 for 0 =0, and therefore p-v >0 for all sufficiently
small 8 ; say for 10l < 7.

It now follows that the complement (M X S') - (D X [n,27-11)

projects submersively to the hyperplane vi . This completes the proof .
|
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AN IMMERSION OF 7" — D" INTO R’

by Steven FERRY  [13#37"

Let 7" = S! x ... x S be the n-torus and let D" = T" be an embedded
disc. Kirby, Siebenmann, and Edwards use immersions of 7" — D" into
R" repeatedly in their work on stable homeomorphisms and triangulations.
| Although the existence of such immersions follows trivially from the work
of Smale and Hirsch, it is appealing to have a more elementary construction.
We will provide an explicit formula. Less explicit constructions have been
given by D. Barden and J. Milnor.
Elements of 7" will be written as (0, ..., 0,) with 6, € S*. 0, will also be
thought of as a real number 0 < 6 < 2xn. Occasionally (84, ..., 8,) will be
denoted by 6.

LemmA 1. Let (0,17) = (fy (0,1), ..., f,+1 (0, 1)) be an embedding of
| T" x (—1, 1)into R*** such thatf, ., (6, #) > 0. The map of 7"*! x (-1, 1)
into R"*2 defined by

(6: t) — (fl (99 t)a "'Df;t (63 t):fn+1 (03 t) COS 911+15fn+1 (93 t).Sin Qn+ 1)

is an embedding. ,

We define the standard embedding of T" < (—1,1) into R**! to be the
: embedding obtained by starting with (8, t) — ((1+1¢) cos 0, (1+1)sin 0,
. +2) and iterating the process described in lemma 1. At each stage we must
; add 2" to the last term so that the condition £, { (0, ) > 0 will be satisfied.
! For example, in the standard embedding of T3 x (1, 1) - R* we have

: f3(0,0 = (1 +1) sin 6, +2) sin 6, +4) cos 6,
i and

f4(0,0) = (((1+1)sin 6; +2)sin 6, +4) sin O +8 .
0i
Let S = {0eT" |0, = 0 for some i, 1 <i<n}.
Let ¢: T" —» R' be defined by

sin 6, ...sin 6, N sin 0, ... sin 6, sin 0, .

on 2n—1 + ot 2

Theorem 1. Let (0,t) > (f1(0,1),....f,+1(0,1) be the standard
embedding of 7" X (—1,1) into R*™'. For some &> 0 the map 6 —

¢ (0) =

L’Enseignement mathém., t. XX, fasc. 3-4. 12




B (f1(6,e0 (0, ..., @6, g@ (0))) has nonsingular Jacobian on S. It therefore
immerses a regular neighborhood of S (i.e. 7"— D") into R".

Proof. Using elementary properties of determinants, we compute:

"% -44) < R stadad fMLeddins

(elt) > ('F'((grt)l'“ ' -Fn(elt)({"“(elt)) afl 4+ & afl g_?i 0
0f; 0f; 0 00, ot 00;
det +&-—"—— = det ==
00; ot 00; 0
OeS - 1 0eS
00,
t=cop =&Q
J f; of; df; 0f; 0 f; af;
P — [ 8 —
00 Ot 00 ; Ot 00 ot
— det | - ‘ = det ! ¢ + det !
op op
- 1 0eS - 0 0eS 0 1 0eS
00, a0 ;
. t=¢¢ ’ t=eq L=&p
By construction, f; involves only 0, ..., 0, and —jil has a factor of sin 6,.

i

Thus, on S the upper left hand corner of the second matrix is triangular
with at least one zero on the diagonal. We have

afi| af;
! of. 0 50— ot
det (= 4 Gjloq)) = —egdet| ———
c0; ¢t 00, do
0eS — 0 0eS
d0;
| t=¢0p t=z¢p
. b](vn + 1 . . .
Notice that f, ., (0,0) = 2" ¢ (0) and that > is identically zero

on S. Thus, if the above determinant is evaluated at 0 € S, ¢t = 0 it is (—27>

times the determinant of the Jacobian of the standard embedding. It is
therefore nonsingular when evaluated at €S, t = ¢p for sufficiently
small ¢. This completes the proof.

In essence, we have perturbed the image of 7" X 0 in R""! along its
normal bundle so that projection into R" is an immersion on S. More precise
calculations show that ¢ may be taken to be 1.

Steven Ferry

Department of Mathematics
University of Kentucky

Lexington, KY. 40506 ( Regu le 25 septembre 1973 )
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(468, Hb#), 1,,04)

[ nt

Pcrb-n.r‘o
A (44(9‘ £q (9\) P | 'Fv\ (9‘ 5(?(9)) ( ‘(:V\M [9( 5({1(9)))
Prrdeoi

A~ (‘(4(91 E"(‘(’(G))i‘" l%\(@{ﬁ-({](e)))

Take P ™ > K ond €30 tmall
¢ ( —5 ) _ 5in 94 -gnB,-..-sinb, - 5nB,-..-sinB, N N sinb,_, sinb, . sin B,
21/\ 2.,\-4 21_ §l

N\



( -MO,'L) 1 —\:“(9,'(?)’ -fm (91%) )

prebucl
A (-(:4(9' Eq (Gn, | 'cn (94 £((J(9)) ( _(:va (9, 5(‘)(6)))
prie=t

= (4,00, 40) . F.(6,c906)

g: T — R
2 . 5m By~ 5mb)-.. sinB, gind),..-sinB, sinb,_,-Snb, sin 6,
¢(8) e o ¢ L e B B
S={(68)eT" | D =0 for sme ieit.ia} § @
[0,1’:; E‘u%—a— S

O

Proof. Using elementary properties of determinants, we compute:

of; af, d
af,  of.a e a({I B 80?% 0
det L te il doile (Asm:"?iet ! J — e
20, "ot a0, 30 =
OeS _— ‘ beS
20,
t=e@ t=e@
ofi of; . 0 fi of; af;
— & ——\| mlbler [— | — ¢ — | —e
20, or \| e [ 0, o 20, or
= det = det + det
oo do
s 1 0eS — 0 0eS 0 1 1 0eS
t=¢@ t=e@ t=ep

—— i :
By construction, f; involves only 0y, ..., 0; and 1 has a factor of sin 0;.

OeS

Thus, on S the upper left hand corner of the second matrix is triangular
with at least one zero on the diagonal. We have
afi| 0f;
o ¢ o f. 0 o0. | ot
det 2 + 94i 09 = —egdet| —4—
c0; ct 00; s 30
= a0,

| t=¢0
L3

L=¢p

Notice that f, ., (0,0) = 2" ¢ (0) and that _b}: is identically zero

on S. Thus, if the above determinant is evaluated at 0 e S, t = 0 it is (?)

— &

times the determinant of the Jacobian of the standard embedding. It is
therefore nonsingular when evaluated at 8€ S, t = gp for sufficiently

small . This completes the proof.
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hy = h.If Wis a subset of U, a deformation ®: P X I — E(U; M) x I
is modulo Wif (k)| W = h| Wforallhe Pand tel.

Suppose that @: P X [ — E(U, M) x Iand y: Q X I - E(U, M)x I
are deformations of subsets of E(U, M), and suppose that @,(P) CQ. Then,
the composition of ¢ with @ denoted by  x @: P x I — E(U, M) x I
is defined by

((p%(h)’ t) lf te [Os %])
(fae1@i(h), 1) if te [%n 1].

We shall denote the cube {xe E*||x;| <r, 1 <i<n} by I
We regard S! as the space obtained by identifying the endpoints of
[—4, 4] and we let p: E' — S* denote the natural covering projection,
that is, p(x) = (¥ + 4)(moas) — 4. Let T be the n-fold product of S
Then, I, can be regarded as a subset of T for r < 4. Let p™: E*» — T*
be the product covering projection and let p*»: Ik X E» — Ik x T
be the map 1+ X p”. These maps will each be denoted by p when there
is no possibility of confusion.

Let B™ be the unit n-ball in E* and let S*1 be its boundary as usual.
We regard S x [—1, 1] as a subset of E™ by identifying (x, ) with
(1 +¢/2) * x.

With the above discussions, definitions and notation out of the way,
we are ready to start formulating some lemmas preliminary to the proofs
of the main results of this section.

A discussion of, and a geometrical proof of, our first lemma will be
postponed until the end of this section. (An immersion of one space
into another is a continuous map which is locally an embedding.)

b« Dh, 1) =

Immersion Lemma 5.6.1. There is an immersion «: T* — B* — E*
of the punctured torus into E™.

For a picture of o in the case n = 2, see Fig. 5.6.2.

Cre)=

TZ_ 82
a(T?- 83

Figure 5.6.2
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We are now ready to give a proof of Immersion Lemma 5.6.1. The
proof presented here was communicated to this author by R. D. Edwards.
It was originated by Barden [2] and was formulated in the following
picturesque form by Siebenmann. (Immersion Lemma 5.6.1 also
follows from [Hirsch, 1].)

Proof of Immersion Lemma 5.6.1. We will work with the followmg

inductive statement which is stronger than Lemma 5.6.1. o i5 the immersion T — R

n-DIMENSIONAL INDUCTIVE STATEMENT: There exists an immersion f
of T X Iinto E™ X Isuchthatf| Ty" X Iis a product map,f = o X 1,
where To™ is T™ minus an n-cell.

-H‘: o X e ‘;ro&ul'.‘t

T -(vell)xT o= RxT |

We adopt the following notation for this proof: Let] = [—1,1] = ],
Jr=m St=1,), T*=(SY* and T,» = T — Int J~. It is
easy to see that E® X S can be regarded as a subset of E»*! where the
I-fibers of E™ X I are straight and vertical in E**! (see Fig. 5.6.9).

£
ThXIH ﬂl"x]'_ gn+!

I

En

&

—

Figure 5.6.9

i

;($4 c [R“+4

Assume that f and « are given by the inductive statement in dimension
n. It is a simple matter to extend f to an immersion of 771 X [ into
E™1 x I, that is, just let

X 1gq:Tr X St X IT—Er x S x ICE®! x [

be the extension (see Fig. 5.6.10). However, f X 14 is not a product on
T3+t X I, but merely on Ty X S' X I. The way to correct this is to
conjugate f X 1 with a 90° rotation (on the I X I factor) of the missing
plug (Tg+t X I) — (Ty» X 8§* X I) =1Int J* x I x I. The fact that
f X 1a| Ty® x I?is a product in the I2 factor allows one to do this.

we ase Looluns {or
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Assume without loss of generality thatf (7" x [-4, 3]) C E* x [-4, £].
Let A be a homeomorphism of /2 that is the identity on Bd J? and is a
m/2-rotation on [— %, 2] X [—%, £] (see Fig. 5.6.11). Extend A via the
identity to a homeomorphism A: ST x I — S' x I (see Fig. 5.6.12).

A rotation in
Sswmall Square

12 12

Figure 5.6.11

b

ICENTITY
HERE

S'x 1 s'xl
Figure 5.6.12



292 5. Taming and PL Approximating Embeddings
T x&'x L
Consider now the following immersion % of 771 X I into En+l x I,

h= (g X A X 1)l X A).

If we let g = h| T*! x [—4, 3], then it can easily be checked that g
is a product on (7,* x SY) U (J* X [—%, %]) which is a deformation
retract of T3+ X [—3, 4]. Thus, without loss of generality we can

assume that g is a product on T¢+! x [4, 3] (see Figs. 5.6.13 and 5.6.14).

Figure 5.6.14

It is now easy to see that such a g gives rise to an immersion as desired
in the theorem. This would be a trivial matter of reparametrizing the /
coordinate if we knew that g(T™ x [—4, §]) C E»t x [—4, §). To
get such an inclusion, one can shrink T§+! a little, with the help of an
interior collar, to T+, and using the fact that g | T0+ X [—34, 4]is a
product, isotop g(7"! x [—3%, 3]) into E7*! X [—34, §]) keeping
g1 T+ X [—3, 3] fixed.

Let us conclude this section with a couple of remarks concerning how
the preceding results on local contractibility relate to codimension zero
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taming. First note that if M* and M* are PL manifolds and if ;: M — M
is a topological homeomorphism which can be approximated arbitrarily
closely by PL homeomorphisms, then the results on local contrac-
tibility imply that % is e-tame. For instance, it follows from Theorem
4.11.1 that stable homeomorphisms of E™ are e-tame. (For an example
of another use of this observation, see Theorem 1 of [Cantrell and
Rushing, 1].) A strong form of the hauptvermutung for PL manifolds
(Question 1.6.5) is just the following codimension zero taming question:
Can every topological homeomorphism of a PL. manifold M™ onto a PL
manifold M" be e-tamed ? By using some of the techniques presented
in this section as well as some work of Wall, it has recently been
established by Kirby and Siebenmann that this codimension-zero taming
theorem holds for many manifolds and fails for others.
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Assume that f and « are given by the inductive statement in dimension
n. It is a simple matter to extend f to an immersion of T+ X I into
E™1 I, that is, just let

FX1lg:Tr x 8t x I —Er x 81 x ICEr! x I

be the extension (see Fig. 5.6.10). However, f X 1 is not a product on
T3+t x I, but merely on Ty» x S* x I. The way to correct this is to
conjugate f X 1 with a 90° rotation (on the J x I factor) of the missing
plug (Tg+* X I) — (Ty* x S* x I) =Int J*» X I x I. The fact that
f X 1a| Ty® x I?isa product in the I factor allows one to do this.
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$ r

\ \ Consider now the following immersion /& of T”"“ X I into En1 x ],

h = (lEn X 571)()(‘ X l,s].)(lrﬂ X ’X)

xx|Tneix-L4L If we let g = h| Tt X [—3, 3], then it can easily be checked that g
|Tn A |T [ 2,2] \\ (/ . is a product on (T," x S') U (J* X [—4%, 4]) which is a deformation

- retract of T8+ X [—3, 3], Thus, without loss of generality we can

assume that g is a product on Tg+! X [4, 3] (see Figs. 5.6.13 and 5.6.14).

Typicol i e B

.._. _] // N [ h: ——l—V\ “ $4 y :[E ~ ’RV\+4 <

sheeis / /

Figure 5.6.13 h= (if*,,zn KT\%) (£ “45)( el oo % —X)

Product on (T'-fr-et)) x8' x T

fx id

xl$4

T '« xL —m— Rx$ =T
N
+4

R « T

Figure 5.6.14



It is now easy to see that such a g gives rise to an immersion as desired
in the theorem. This would be a trivial matter of reparametrizing the /
coordinate if we knew that g(T"*! x {—13, 1)) CE*1 x [—4%, £]. To
get such an inclusion, one can shrink 7¢+! a little, with the help of an
interior collar, to T+, and usmg the fact that g | T8+t X [—3, §]is a
product, isotop g(7"t! x [—%, 3]) into E»*! X [—3, 3]) keeping

g| T{+t X [‘—'ﬁ's 2] ﬁxed



