Deeply Slice Knots
[with Michael SLug]
local knot in
"Surprising" fun fact:
If a local knot k in a 3 -mild. y^{3} bounds a disk in $Y \times[0,1]$
then K is already slice in $\mathbb{D}^{4} \quad \underset{0}{\nabla}$

$$
\binom{\text { in other words, also bounds a disk }}{\text { in } \mathbb{S}^{3} \times[\sigma, 1]}
$$

Local means that K is contained in

- "Surprising", because you might expect that the "extra room" in Y would allow you to construct more disks in $y \times[0,1]$ than in $\Phi^{3} \times[0,1]$, but apporently this is not the case
-) Proof uses the nontrivial fact that the universal cover $Y \backslash$ int \mathbb{D}^{3} of every (punctured) compact 3-mfld. embedds in $\3.

This was probably known to Perelman and is a corollary of his Gecmetrization thm., but appears in print later in

- Also, compare with

Smooth and topological almost concordance
Matthias Nagel, Patrick Orson, JungHwan Park, Mark Powell
(Submitted on 4 Jul 2017 (vi), last revised 4 Jan 2018 (this version, v2))
We investigate the disparity between smooth and topological almost concordance of knots in general 3manifolds Y . Almost concordance is defined by considering knots in Y modulo concordance in $\mathrm{Yx[0,1]}$ and the action of the concordance group of knots in the 3 -sphere that ties in local knots. We prove that the trivial free homotopy class in every 3 -manifold other than the 3 -sphere contains an infinite family of knots, all topologically concordant, but not smoothly almost concordant to one another. Then, in every lens space and for every free homotopy class, we find a pair of topologically concordant but not smoothly almost concordant knots. Finally, as a topological counterpoint to these results, we show that in every lens space every free homotopy class contains infinitely many topological almost concordance classes.

Pf. (of fan fact):
universal cover

$\widetilde{\varphi^{3}} \times \mathbb{I} \longrightarrow S^{3} \times \mathbb{I}$
$\mathbb{D}^{2} \xrightarrow[\Delta]{\longrightarrow} Y^{3} \times \mathbb{I}$
with $\partial=$ local knot $K \subset \varphi \times\{0\}$

Lift of disk with
$\partial=$ are of the

$$
\mathbb{D}^{2} \underset{\Delta}{\longrightarrow} Y^{3} \times \mathbb{I}
$$

$$
\text { with } \partial=\text { local knot } K \subset \varphi \times\{0\}
$$

Def:: $K \subset \partial W^{4}$ is deeply slice in W^{4}
if it bounds a properly embedded disk $\mathbb{D}^{2} \hookrightarrow w, \quad \partial \mathbb{D}^{2}=K$ but K is not null-concardant in a collar $\partial W \times$ II of the boundary of W.

All the slice disks of K have to "go deep" into W. Knots which are null-concordant in a neighborhood of the boundary

"deep" slice disk which cannot be pushed into a collar of the a could be called shallowly slice.

Stupid observation:
Slice knots in W which are not even mullhanotapic in ∂W will always be deeply slice, since they won't even bound an immersed disk in a collar. e.g. the $\{p t\} \times \mathbb{S}^{1} \subset \mathbb{S}^{2} \times \mathbb{D}^{2}$ is deeply slice
\leadsto From now on, only consider nullhamotopic knots $K<\partial W$ in the boundary.

Prop: 4-dim. solid 1-handlebodies
$\$^{k} \$^{1} \times \mathbb{D}^{3}$ dan't contain deeply slice knots.
Pf: By general position, can wake any (2-dim.) disk disjoint from the "care"

then push disk (radially) towards boundary collar

Thu: Any $\underbrace{2 \text {-handlebody }}$ contains deeply slice knots in its boundary. 4-dim. σ-handle u some number of 2-handles

Pf:
Splits up in two cases $V^{4}=2$-handel embody $=h^{0} \cup \bigcup_{\alpha} h_{\alpha}^{2}$
(1) $\partial V^{4} \neq \Phi^{3}$ and thus not simply-connected
\leadsto Wall's self-intersection concordance invariant

$$
\mu(K) \in \frac{\mathbb{Z}\left[\pi_{1} \partial V\right]}{\left\langle g-g^{-1} \mid g \in \pi_{1}(\partial V)\right\rangle \oplus \mathbb{Z}[e]}
$$

(2) $\partial V \cong S^{3}$, here we consider whether some homology classes can be represented by embedded surfaces and apply one of Rohlin's this.

Algebraic linking numbers of knots in 3-manifolds Rob Schneiderman
(Submitted on 4 Feb 2002 (vi), last revised 4 Oct 2003 (this version, v4))
Relative self-linking and linking "numbers" for pairs of knots in oriented 3 -manifolds are defined in terms
of intersection invariants of immersed surface of intersection invariants of immersed surfaces in 4 -manifolds. The resulting concordance invariants
generalize the usual homological notion of linking by taking into account the fundamental group of the ambient manifold and often map onto infinitely generated groups. The knot invariants generalize the cyclic (type 1) invariants of Kirk and Livingston and when taken with respect to certain preferred knots,
called spherical knots, relative self-linking numbers are characterized geometrically as the complete obstruction to the existence of a singular concordance which has all singularities paired by Whitney disks. This geometric equivalence relation, called W-equivalence, is also related finite type-1 equivalence (in the sense of Habiro and Goussarov) via the work of Conant and Teichner and represents a 'first order'
improvement to an arbitrary singular concordance. For null-homotopic knots, a slightly weaker geometric equivalence relation is shown to admit a group structure.

A Note on Knot Concordance
Elem Zeliha Yildiz
(Submitted on 6 Jul 2017 (v1), last revised 28 May 2018 (this version, v3))
We use classical techniques to answer some questions raised by Daniele Celoria about almostconcordance of knots in arbitrary closed 3 -manifolds. We first prove that, given $Y^{3} \neq S^{3}$, for any nonfree homotopy class of the unknot. In particular we consider these distinct smooth almost -cons in the classes on the boundary of a Mazur manifold and we show none of these distinct classes bounds a PLdisk in the Mazur manifold, but all the representatives we construct are topologically slice. We also prove that all knots in the free homotopy class of $S^{1} \times p t$ in $S^{1} \times S^{2}$ are smoothly concordant.
non-tival "topology" of $K \subset \partial V$ oriented, null-homotopic knot

track of nullhowotopy:
immersed $D^{2} \longrightarrow \partial V \times I$ with $\partial=K$
and finite number of self intersections

double point loops
noll-homotopic knot

$$
\begin{aligned}
& \mu(K):=\sum_{\substack{\text { redouble points } \\
\text { in the track }}}
\end{aligned}
$$

drop element from g_{p} to g_{p}^{-1}

Independent of choice of:.) nullhawotopy [use Fredran-Quim to decompose regular haonotpy into finger \& Whitivey woes + statemements about embedded sprees representing π_{2} (3 -mild.]
-) orderings of sheets
-) whiskers on the disk e (which is simply-camected)
μ is concordance invariant:

Remember we are trying to find a deeply slice knot γ in $\quad \partial V=\partial\left(h^{0} v U^{\alpha} h_{\alpha}^{2}\right) \quad$ under the assumption that

$$
\pi_{1}(\partial V) \neq 1
$$

described by framed link (attaching circles of the 2-handles)

$\pi_{1}(\partial V) \neq 1$, so at least one of the meridians is nontrivial in π_{1} Let's suppose it's this one

Then $\gamma=$ Uh (m) is deeply slice!

Null-homotopy of γ in ∂V :

The unknotted curve

bounds a disk in the O -handle

$\Rightarrow \mu(\gamma)=m \neq \sigma \in \frac{\mathbb{Z}\left[\pi_{1} \partial V\right]}{\left\langle g-g^{-1}\right\rangle \oplus \mathbb{Z}[e]}$ and thus γ not null-concordant
(2) Suppose $\partial V=\partial\left(h^{0} \cup U h_{\alpha}^{2}\right)$ simply connected

$$
\Rightarrow \partial V \cong S^{3}
$$

[μ is of no use since it takes values in the trivial module]
But now we can close V off with a 4 -handle: $\hat{V}:=V u_{\partial=\Phi^{3}} \mathbb{D}^{4}$
Theorem 3.5 (Rohlin, [Roh71]). Let X be an oriented closed smooth 4 -manifold with $H_{1}(X ; \mathbb{Z})=$ 0 . Let $\psi \in H_{2}(X ; \mathbb{Z})$ be an element that is divisible by 2, and let A be a closed oriented surface of genus g smoothly embedded in X that represents ψ. Then

$$
4 g \geq|\psi \cdot \psi-2 \sigma(X)|-2 b_{2}(X)
$$

Lemma 3.6. Let X be a closed smooth 4 -manifold with $H_{1}(X ; \mathbb{Z})=0$, and $H_{2}(X ; \mathbb{Z}) \neq 0$. Then
7 there exists a homology class $\psi \in H_{2}(X ; \mathbb{Z})$ that cannot be represented by a smoothly embedded sphere.

We'U use this: Let $\psi \in H_{2}(\hat{V} ; \mathbb{Z})$ be a homology class that cannot be represented by an embedded sphere.

$K=\partial D$ is deeply slice in V, otherwise we could replace the part of F in the 4-handle with an embedded disk and get an (impossible) sphere representative of ψ
"Universal slicing" - manifolds
Norman's trick: Any knot $K \subset \Phi^{3}$ bounds a properly embedded disk in $S^{2} \times S^{2} \backslash$ int \mathbb{D}^{4}

Pf.: Track of nullhomotapy gives immersed dish, tube into $\mathbb{S}^{2} \times \mathrm{pt}^{2}$, pt $\times \mathbb{S}^{2}$ to remove double points.

Tubing into the coordinate spheres of $\mathbb{S}^{2} \times \mathbb{S}^{2}$ changes the
homology class, ie. this process creates embedded disks which are usually not null-hamdogars
Most people require that a (properly embedded) slice disk
$\Delta: \mathbb{D}^{2} \longrightarrow V^{4}$
satisfies $[\Delta, \partial \Delta]=O \in H_{2}\left(V^{4}, \partial V_{i} \mathbb{Z}\right)$
$\Leftrightarrow \Delta$ intersects all oriented dosed surfaces algebraically zero times

Prop:: K slice (via a wull-hondogous disk) in a

$$
\left(\#^{n} \mathbb{S}^{2} \times \mathbb{S}^{2}\right) \backslash \operatorname{int} \mathbb{D}^{4}
$$

iff. $\quad \operatorname{Arf}(k)=0$.

STABLY SLICE DISKS OF LINKS
ANTHONY CONWAY AND MATTHIAS NAGEL
 the minimal number n of $\overline{S^{2} \times S^{2} \text { connected summand required for } K \text { to }}$
bound a nullhomotopic locally flat disc in $D^{4} \# n S^{2} \times S^{2}$. This quantity is defined when the Arf invariant of K is zero. We show that $\operatorname{sn}(K)$ is bounded below by signatures and Casson-Gordon invariants and bounded above by with $\operatorname{sn}(K)<g_{4}^{\text {top }}(K)$.

Pf: We se the coordinate spheres of $\mathbb{S}^{2} \times \mathbb{S}^{2}$ to perform band passes

or equivalently

Since we are always sliding pairs of oppositely oriented strands, the track of this movie is a null-homologous cobordism

Prop: Any knot $K \subset \mathbb{S}^{3}$ is slice (via a wull-handogous disk) in some

$$
\left.\left(\#^{k} \mathbb{C} \mathbb{P}^{2} \#^{l} \overline{\mathbb{C} \mathbb{P}^{2}}\right)\right\rangle \text { int } \mathbb{D}^{4}
$$

TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 297, Number 1, September 1986

UNKNOTTING INFORMATION FROM 4-MANIFOLDS
T. D. COCHRAN ${ }^{1}$ AND W. B. R. LICKORISH

Abstract. Results of S. K. Donaldson, and others, concerning the intersection forms of smooth 4 -manifolds are used to give new information on the unknotting numbers of certain classical knots. This information is particularly sensitive to the signs of the knot crossings changed in an unknotting process.

Pf.: Sequence of positive and negative crossing changes leads from K to unknot
.) We the "correct" $\mathbb{Q P}^{2} \propto \overline{\mathbb{C P}^{2}}$ to remove the double points

Just like before: Since we are always sliding pairs of appositely oriented strands, the track of this movie is a mull-homologaus cobordism

Nave generally, by sliding over the

(-1)-2-sples $\frac{\mathbb{C P}}{}{ }^{1} \subset \frac{\mathbb{C P}}{} \mathbb{P}^{2}$
can add a positive full twist to a bundle of parallel strands

If the track of this isotopy/mavie should give a null-homologous disk, we better only do this to bundles where the orientations algebraically sum up to zero
) There are examples of knots which are slice in $\#^{M} \mathbb{A} \mathbb{P}^{2}$, but not in $\#^{M-1} \mathbb{C} \mathbb{P}^{2}$ It is probably very interesting to think about a "stabilizing number" for slicing in connected sums of projective planes

Q: is there a (dosed, sm. 4 -mold. $V_{\text {wiereal }}^{4}$
s.th. every knot $K \subset \mathbb{S}^{3}$ is slice in $V_{\text {winfred }} \backslash$ int \mathbb{D}^{4} ?
(via a millhamlogors disk)

Prop: Any compact (sm.) 4 -mold. W with $\partial W=\mathbb{S}^{3}$ contains a knot in its boundary which is not even topologically slice in W.

Let's construct such a non-slice knot under the additional assumption that $H_{1}(W)=O$. We'll use the following generalization of the Murasugi-Tristram inequality:
The next theorem provides an obstruction for two links to cobound a nullhomologous cobordism.
[Conway, Nagel] Stably slice disks of links
Theorem 3.8. Let V be a closed topological 4-manifold with $H_{1}(V ; \mathbb{Z})=0$. If $\Sigma \subset\left(S^{3} \times I\right) \# V$ is a nullhomologous cobordism between two μ-colored links L and L^{\prime}, then

$$
\mid \sigma_{L^{\prime}}(\omega)-\sigma_{L}(\omega)+\underset{\uparrow}{\operatorname{sign}(V)\left|+\left|\eta_{L^{\prime}}(\omega)-\eta_{L}(\omega)\right|-\chi(V)+2 \leq c-\sum_{i=1}^{\mu} \chi\left(\Sigma_{i}\right) .\right.}
$$

for all $\omega \in \mathbb{T}_{!}^{\mu}$.
Signature of the 4-wifd. Vunit complex numbers which are not "Knotewwilstellen",

In our special case:

Then:

$$
\left|\sigma_{k}(\omega)+\operatorname{sign}(V)\right|-\chi(V)+2 \leq \sigma
$$

\exists knots with arbitrary
high signature, so for any 4 -mold. $V^{4} \quad\left(\right.$ with $\left.H_{1} \mathrm{~V}=\sigma\right)$ we can find $K=\mathcal{S}^{3}$ for which this inequality is violated, thus K cannot be slice in V

