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The mathematician who had little
wisdom: a story and some

mathematics

DANIEL E. COHEN

1. The Story

If any of you who read this volume do not like stories, then I am sorry for
you. Stories are the thread from which the fabric of the world is woven, and
to dislike stories is to dislike life. But, to any such people, I would also say
that if you read this story you will also learn some mathematics.

Once there was a mathematician who had little wisdom. One spring he
attended a group theory conference in Scotland, which may or may not have
been wise of him. Since the conference was long, he decided to take a couple
of days off, which was certainly wise. He had heard much about the beauty
of Scotland’s rivers, and the fine salmon that swam in them, so he decided
to go salmon-fishing. He did not think of the need for a licence, nor that a
large charge is made for the right to fish for salmon in most places; indeed,
he had not even checked whether there were salmon in the rivers at that time
of year. This may seem foolish of him, but turned out not to be so.
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Figure 8.7 A van Kampen diagram for as >as’a's>a~'s> with respect to {(a, s | s las =
a®). All vertical edges are labeled a and directed upwards. All horizontal edges
are labeled s; those on the left half of the diagram are oriented to the right and

those on the right half are oriented to the left. An example of a corridor 1s shown
n green.



Exercise 13. Show that the Cayley 2—complex of (a, s | s 'as = a?) is homeo-
morphic to the direct product of an infinite 3-valent (that is, three edges meet at

each vertex) tree with a line, and so is contractible. For a picture of the Cayley
2—complex for BS(1, 3) see Figure 12.1, which 1s similar except that the tree there
1s 4-valent instead of 3-valent. Show that the maps from the diagrams of Figure 8.7
to the Cayley 2—complex are embeddings.

b_lf_l tt

Figure 12.1 An interesting partial Cayley graph constructed from two generators. Dashed
lines are graph edges, solid lines are cutaways. The green vertices comprise the
ball of radius 2. Several of these vertices don’t fit on the cutaway diagram and
are indicated by arrows.



Project 7. Explore the Dehn functions of one-relator groups (groups that can be
presented with a single defining relation). Magnus [196] solved the word problem
for any one-relator group. So their Dehn functions are recursive. But how fast can
they grow? A longstanding problem of Gersten [140, 142] is whether the example
of Theorem 8.10 1s the fastest possible.

THEOREM 8.10. The Dehn function of

1 1

a,t| ¢ taty tatT at) = a®)

is equivalent to the function n — exp1°&2"D(1).



The same strategy works for (a, s | s 'as = a?), whose Dehn function grows

exponentially fast as we will see in Section 8.5. It can be represented by matrices

viaa — (} ?) and s — (162?).

Project 8. Another challenging open problem due to Gersten 1s to determine how
fast Dehn functions of finitely presentable linear groups can grow. The group of
Theorem 8.8 is linear and has an exponential Dehn function. Is there a faster grow-
ing example?

THEOREM 8.8. The Dehn function f(n) of the presentation (a,s | s 'as = a*)
satisfies f(n) >~ 2".



