Stable classification of 4-manifolds

Plan:

1. The Whitney trick - and why it does not work in dimension 4
2. Removing intersections by tubing into other things, \(\# S^2 \times S^2 \)
3. Spin thickenings & equivariant intersection forms

Everything in this talk will be smooth!

Sources:

[Scorpan: The wild world of 4-manifolds]
[Kasprzak, Powell, Teichner: Algebraic criteria for stable diffeomorphism of 4-manifolds]
[Arunima Ray, Peter Teichner: The topology of 4-manifolds]

Class taught at the University of Bonn in the winter of 2018]
Recall: The h-cobordism theorem (in dim $n \geq 5$)

\[M_2 \xrightarrow{\sim} W^{n+1} \xrightarrow{\sim} M_0 \times [0,1] \]

"A homology cylinder in dim ≥ 5 is already a cylinder"

Ingredients for the proof:
Take a handle decomposition of W^{n+1} relative to M_0

```
\begin{array}{c}
M_4 \\
\vdots \\
\text{\small 2-handles} \\
\text{\small 1-handles} \\
\end{array}
\quad M_0 \times [0,1]
```

Deal with 0, 1-, m-, $(m+1)$-handles separately
handle trading, turning the decomposition upside down, ...

Want to use handle cancellation:

- belt sphere in red
- attaching sphere in green

For cancellation to work, the attaching sphere has to intersect the belt sphere geometrically once

2-dim. 3-dim.
The conditions on the boundary inclusions $M_i \hookrightarrow W$ yield that the k- and $(k+1)$-handles cancel algebraically.

\[H_*(W, M_i) = 0 \]

Need to turn algebraic cancellation into geometric cancellation.
Whitney trick: turning algebraic into geometric cancellation

Past

Present

Future

two surfaces in a 4-manifold

two intersection points with different signs

Whitney disk

WHITNEY MOVE

The two algebraically cancelling intersection points between \(f_1 \) and \(f_2 \) are gone!

But ...
Problems with this in 4-dimensions:

1. $2 + 2 = 4 \implies$ Possibly can't find embedded Whitney disks. The disks might intersect other things, themselves or each other.

 $f_3 \leftarrow$ something might crash through the Whitney disk.

 \uparrow Whitney trick removes the two cancelling intersections between f_1 and f_2, but introduces two new intersections between f_2 and f_3.

2. Even if we can find embedded disks, they might have the wrong framing (need this for the parallel copies of the Whitney disks).

 $\pi_1 \text{SO}(2) \cong \mathbb{Z}$

 Whitney framing: normal to f_1, tangent to f_2.

Slogan: 4-dimensional (smooth) topology is all about intersecting disks/spheres/surfaces!
Stable classification: Allow connected sum \(\neq S^2 \times S^2 \)

Schematic picture of \(S^2 \times S^2 \):

\[S^2 \times \{ \text{pt} \} \]

transverse intersection in a single point

Kirby diagram of \(S^2 \times S^2 \):

\[\sigma \quad (4\text{-handle}) \]

two zero-framed 2-handles

Intersection form:

\[\lambda_{S^2 \times S^2} = \begin{pmatrix} 0 & 1 \\ \Lambda & 0 \end{pmatrix} \]

we sometimes call this a hyperbolic form

\[\lambda_{S^2 \times S^2} : H_2(S^2 \times S^2; \mathbb{Z}) \times H_2(S^2 \times S^2; \mathbb{Z}) \to \mathbb{Z} \]

Removing intersections by tubing into things:

in our case, think of Whitney disks

Imagine two surfaces \(P, Q \) with an intersection point that we want to get rid of:

(P and Q transverse at this point)

\[P \]

\[Q \]

\[\sigma \]

\[\Lambda \]

Local model:

\[\text{single intersection point} \]

\[p \]

\[q \]

Join \(P \) with an sphere by using tube

e such a thin

\[P \text{ is now meeting the other sphere in exactly one point} \]

\[\text{transverse/dual sphere for } P \]
Intersection point of P and Q has vanished

Pick a path in P from the intersection point with Q to the intersection point with the transverse sphere

\[\Rightarrow\] using a thin tube following this path, connect Q to a parallel copy of the sphere

"4D-picture":

Analogy: Removing an intersection of curves on a surface by connected summing with $S^2 \times S^2$:

Note: *) None of the maneuvers change the genus of either P or Q

\[\Rightarrow\] can use this to eliminate (self-) intersections of immersed Whitney disks

*) Can tube into the diagonal/anti-diagonal of an $S^2 \times S^2$ to change the framing of a disk by ± 2
M, N closed, smooth simply connected 4-manifolds

\[M \cong N \implies M \text{ h-cobordant to } N \]

\(\Rightarrow \) M diffeomorphic to N after connected summing with sufficiently many copies of \(S^2 \times S^2 \) stabilization.

Proof:

Of \(\Rightarrow \): The program for the proof of the h-cob. theorem now works:

Whenever we need to get rid of intersection points, add a copy of \(S^2 \times S^2 \).

Rem.: With luck, can use the same \(S^2 \times S^2 \) term to eliminate several intersections.

We don't know any example where more than one stabilization is necessary!
A complete classification of 4-manifolds is impossible!

Fact: Every finitely presented group appears as the fundamental group of a closed, smooth, orientable, spin, ...
(compact, no θ)

4-manifold.

Af. idea: \(\pi = \langle g_1, \ldots, g_n \mid r_1, \ldots, r_m \rangle \)

1) Start with \(n \times S^3 \) one summand for each generator

\[\pi \cong \text{free group on } n \text{ generators} \]

2) Realize the words of each relation by disjoint, embedded circles

3) Perform surgery on these curves:

Remove neighborhoods \(S^1 \times D^3 \) of each circle \(\Rightarrow \) boundary around each component is \(S^1 \times S^2 \)

this curve bounds a disk now

\[\Rightarrow \text{introduces exactly the relation } r_n \text{ into the fundamental group} \]

Glue in \(m \) copies of \(D^2 \times S^2 \)

Exercise: Why doesn’t this construction work in dim. \(\leq 3 \)?
Matthias Kreck: Stable classification in the non-simply connected setting

\[
\begin{aligned}
&\text{smooth, closed, oriented, spin 4-manifolds} \\
&\text{with fundamental group } \pi_1 \text{ (finitely presented)} \\
&\text{stable diffeomorphism} \quad \left(= \#^k S^2 \times S^2 \right) \\
\end{aligned}
\]

\[\xrightarrow{1:1} \quad \frac{\Omega^\text{Spin}_4(B\pi_1)}{\text{Aut}}\]

\[\text{Aut} = H^1(B\pi_1; \mathbb{Z}_2) \times \text{Out}(\pi_1)\]

are the automorphisms of the so-called normal 1-type

\[\Omega^\text{Spin}_4(B\pi_1)\] is something we can sometimes calculate, for example using the Atiyah-Hirzebruch-Spectral Seq:

\[E_2 = H^p(B\pi_1; \Omega^\text{Spin}_{2+q}(\pi_1)) \Rightarrow \Omega^\text{Spin}_{p+q}(B\pi_1)\]

[Kosinski, Powell, Teichner]: Identified algebraic obstructions coming from the filtration of AHSS

- primary: \[c_\ast([M]) \in H^4(\pi_1; \mathbb{Z})\]
- secondary: related to intersection pairing on \(\pi_2(M)\)
- tertiary: higher order intersection data from Whitney disks

To prescribe the fundamental group we can give a (homotopy class of a) map

\[M \xrightarrow{c} B\pi_1 \quad \xrightarrow{\beta} \quad [M \xrightarrow{c} B\pi_1] \]

In my master thesis, I looked at

\[\left[O\right] \in \Omega^\text{Spin}_4(B\pi_1)\]

"a spin thickening of the group \(\pi_1\)" & its equivariant intersection form
Two constructions for a representative of $[O^3]$:

1. Take a presentation 2-complex for π, embed into $\mathbb{R}^5 \hookrightarrow K_\pi$

 Look at the boundary of a tubular neighborhood of K_π: $\partial (\nu K_\pi)$ closed 4-manifold with correct χ.

2. Build a 4-dim. handlebody (handles of index ≤ 2) $M^{(k)}$ (even framings to get spin manifold)

 \[
 \text{Double} \left(M_\pi \right) = M_\pi \cup_{\partial M_\pi} M_\pi \quad \left(\cong \partial (M_\pi \times [0,1]) \right)
 \]

 It's not hard to draw a Kirby diagram for this!

 (doubling just adds 0-framed meridians to all the 2-handles)
Specifically, I looked at the equivariant intersection form of $[\sigma] = [\text{Double}(M_{g\text{c}})]$.

Def: M closed, connected 4-manifold

$$\lambda_M : \pi_2(M, \ast) \otimes \pi_2(M, \ast) \to \mathbb{Z}[\pi_1 M]$$

Diagram:

- (immed) 2-spheres in M
- Sign ± 1
- Fundamental group element
- Finite number of double points
- Basepoint

$$\lambda_M([\alpha : S^2 \to M], [\beta : S^2 \to M]) := \sum_{p \in \alpha \cap \beta} \varepsilon_p \cdot g_p$$

Schematic:

- Whiskers
- 2-spheres
- $g_p \in \pi_1 := \pi_1 M$

Properties:

- λ_M sesquilinear
- λ_M hermitian

Involution on the group ring:

$$: \mathbb{Z}[\pi] \to \mathbb{Z}[\pi]$$

$$g \mapsto \overline{g} = g^{-1}$$
Question: Parity?

Def.: λ^ad_M is called even if $\lambda^\text{ad}_M = q + q^*$ for some $q \in \text{Hom}_{\mathbb{Z}/2}(\pi_2(M), \pi_2(M)^*)$.

Ex.: $\lambda^{S^2 \times S^2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

Question: Is $\lambda_{\text{Diade}(M_{\Sigma})}$ even?

Remark: The answer does not depend on the presentation of π_2 or choice of M_{Σ}, because all involutions elements in $\Omega^{e, \text{Spin}}_4(B\Sigma)$ are stably diffeomorphic (by Kreck) and $\lambda^{S^2 \times S^2}$ is even.

Proposition: For $\Sigma = \mathbb{Z}/m \times \mathbb{Z}/n$, it is even!

Rough idea: It is actually enough to check the evenness on any closed, spin, 4-manifold with $\Sigma \cong \mathbb{Z}/m \times \mathbb{Z}/n$.

1. Use an action $\mathbb{Z}/m \times \mathbb{Z}/n$
 - \to rotate
 - $S^3 \times S^1$

2. Then perform surgery on the quotient to get rid of the contribution of the S^1-factor to Σ

3. Compute π_2 by looking at H_2 of the universal cover, construct explicit representatives and count intersections.