Doubly slice knots

Benjamin Matthias Rupnik

MPIM Bonn

2019–05–13
Slice knots and Concordance

Definition
A knot $K \subset S^3$ is called slice if it arises as the equatorial slice of a 2-sphere embedded in S^4.

Other definitions that you might have seen:
- K is slice if ...
 - ... it is concordant to the unknot.
 - ... it is the boundary of a flat/smooth 2-disk in the 4-ball.

\[\text{Figure 1: Slicing a 2-sphere}\]

\(^a\)There is a topological locally flat and smooth version of this.
Doubly slice knots

Question [Fox, 1960s]
Which slice knots are cross sections of unknotted 2-spheres $S^2 \hookrightarrow S^4$?

Definition
We call such slices of a 2-unknot doubly slice.

- So named because a doubly slice knot slices in two ways.
- Example: 9_{46}

Figure 2: Claim: The union of the two slice disks in the picture is a trivial 2-sphere.
Another example

Proposition

$K \# (-K)$ is doubly slice.

- Careful: This is a cross-section of the sphere S obtained by spinning the knot K, but this S^2 is knotted in S^4! Its knot group $\pi_1(S^4 \setminus S)$ agrees with $\pi_1(S^3 \setminus K)$.
- Surprising observation [Zeeman, 1965]: The ± 1-spin of a knot K is unknotted.

Figure 3: Spinning a knot to obtain a 2-sphere

Figure 4: Twist the dotted 3-ball around an axis while performing the spinning in \mathbb{R}^4
Multi-infection by a string link

- Generalizes the notion of a satellite link
Connection

Proposition [Cochran, Friedl, Teichner: New constructions of slice links, 2009]

Any algebraically slice knot K is smoothly concordant to an infection of the form

$$\text{Inf}(L, J, \eta_i)$$

with

- L ribbon
- J string link with linking numbers zero
- η_i in the intersection of the terms of the lower central series of $\pi_1(S^3 \setminus L)$

Question

Is there a similar statement for algebraically doubly slice knots K?